Skip to content

Homework2

约 663 个字 预计阅读时间 2 分钟

问题一

1

现规则

进球次数 概率
0 \((1-p)^2\cdot (1-q)^2\)
1 \(2p(1-p)\cdot 2q(1-q)\)
2 \(p^2\cdot q^2\)

可得

\[\begin{aligned} P&=P_0+P_1+P_2=(1-p)^2\cdot (1-q)^2+2p(1-p)\cdot 2q(1-q)+p^2\cdot q^2 \\ &=6p^2q^2-6p^2q-6pq^2+8pq+p^2-2p+q^2-2q+1 \end{aligned}\]

\(p=\frac{3}{4},q=\frac{2}{3}\)时,有

\[\begin{aligned} P=\frac{61}{144} \end{aligned}\]

新规则

进球次数 概率
0 \((1-p)(1-q)\cdot (1-q)(1-p)\)
1 \([p(1-q)+(1-p)q]\cdot [q(1-p)+(1-q)p]\)
2 \(pq\cdot qp\)

可得

\[\begin{aligned} P&=P_0+P_1+P_2 \\ &=(1-p)(1-q)\cdot (1-q)(1-p)+[p(1-q)+(1-p)q]\cdot [q(1-p)+(1-q)p]+pq\cdot qp \\ &=6p^2q^2-6p^2q-6pq^2+6pq+2p^2-2p+2q^2-2q+1 \end{aligned}\]

\(p=\frac{3}{4},q=\frac{2}{3}\)时,有

\[\begin{aligned} P=\frac{31}{72} \end{aligned}\]

2

现规则

加赛第一轮先罚球队获胜的情况为某一轮先罚球球进,后罚球不进,有

\[\begin{aligned} P&=p(1-q)+[pq+(1-p)(1-q)]p(1-q)+[pq+(1-p)(1-q)]^2p(1-q)+\cdots \\ &=p(1-q)\sum_{i=0}^{\infty}[pq+(1-p)(1-q)]^i \\ &=\frac{p(1-q)}{1-pq-(1-p)(1-q)} \\ &=\frac{p(1-q)}{p+q-2pq} \end{aligned}\]

加赛第一轮后罚球队获胜的情况为某一轮先罚球球不进,后罚球进,有

\[\begin{aligned} P&=(1-p)q+[pq+(1-p)(1-q)](1-p)q+[pq+(1-p)(1-q)]^2(1-p)q+\cdots \\ &=(1-p)q\sum_{i=0}^{\infty}[pq+(1-p)(1-q)]^i \\ &=\frac{(1-p)q}{p+q-2pq} \end{aligned}\]

新规则

令加赛第一轮先罚球队为\(A\),后罚球队为\(B\)

\(A\)获胜的情况为某一轮\(A\)罚球球进,\(B\)罚球不进,有

\[\begin{aligned} P&=p(1-q)+[pq+(1-p)(1-q)](1-p)q+[pq+(1-p)(1-q)]^2p(1-q)+\cdots \\ &=p(1-q)\sum_{i=0}^{\infty}[pq+(1-p)(1-q)]^{2i}+(1-p)q\sum_{i=0}^{\infty}[pq+(1-p)(1-q)]^{2i+1} \\ &=\frac{p(1-q)}{1-[pq+(1-p)(1-q)]^2}+\frac{(1-p)q[pq+(1-p)(1-q)]}{1-[pq-(1-p)(1-q)]^2} \\ &=\frac{p(1-q)+(1-p)q[pq+(1-p)(1-q)]}{1-[pq-(1-p)(1-q)]^2} \end{aligned}\]

\(B\)获胜的情况为某一轮\(A\)罚球球进,\(B\)罚球不进,有

\[\begin{aligned} P&=(1-p)q+[pq+(1-p)(1-q)]p(1-q)+[pq+(1-p)(1-q)]^2(1-p)q+\cdots \\ &=(1-p)q\sum_{i=0}^{\infty}[pq+(1-p)(1-q)]^{2i}+p(1-q)\sum_{i=0}^{\infty}[pq+(1-p)(1-q)]^{2i+1} \\ &=\frac{(1-p)q}{1-[pq+(1-p)(1-q)]^2}+\frac{p(1-q)[pq+(1-p)(1-q)]}{1-[pq-(1-p)(1-q)]^2} \\ &=\frac{(1-p)q+p(1-q)[pq+(1-p)(1-q)]}{1-[pq-(1-p)(1-q)]^2} \end{aligned}\]

问题2

1

\(A\)比赛胜利当且仅当\(A\)得分或\(A\)未得分时\(B\)未得分,有

\[\begin{aligned} p_0&=(\alpha+\beta)+\gamma^2(\alpha+\beta)+\gamma^4(\alpha+\beta)+\cdots \\ &=(\alpha+\beta)\sum_{i=0}^{\infty}\gamma^{2i} \\ &=\frac{\alpha+\beta}{1-\gamma^2} \\ &=\frac{1}{1+\gamma} \end{aligned}\]

2

第一回合\(A\)射门

\[\begin{aligned} a=\gamma+\frac{\beta}{1+\gamma} \end{aligned}\]

第一回合\(A\)不得分

\[\begin{aligned} b=1-p=1-\frac{1}{1+\gamma}=\frac{\gamma}{1+\gamma} \end{aligned}\]

3

\(A\)获胜的概率为

\[\begin{aligned} p_1&=\alpha+a\beta+b\gamma \\ &=\alpha+(\gamma+\frac{\beta}{1+\gamma})\beta+\frac{\gamma^2}{1+\gamma} \\ &=\frac{\gamma^2\beta+\beta^2-\beta+1}{1+\gamma} \end{aligned}\]

对于\(p_1\),在\(\beta,\gamma\in (0,1)\)的情况下,有\(p_1>\frac{1}{2}\),且\(p_0=\frac{1}{1+\gamma}>\frac{1}{2},p_0>p_1\),故新赛制下\(A,B\)获得胜利的概率更接近,更加合理。