Skip to content

Homework4

约 1024 个字 预计阅读时间 3 分钟

问题一

1

由题意可得,商船与海盗的位置与速度有关,有

\[\begin{aligned} \frac{dx_a}{dt}&=v_a(t)\cdot cos(\alpha(t)) \\ \frac{dy_a}{dt}&=v_a(t)\cdot sin(\alpha(t)) \\ \frac{dy_b}{dt}&=v_b(t)\cdot cos(\beta(t)) \\ \frac{dy_b}{dt}&=v_b(t)\cdot sin(\beta(t)) \end{aligned}\]

有初值\(x_a(0)=y_a(0)=0,x_b(0)=x_0,y_b(0)=y_0\)

2

当海盗的方向指向商船时,\(r(t)\)减小最快。有

\[\begin{aligned} \beta(t)=arctan\frac{y_a(t)-y_b(t)}{x_a(t)-x_b(t)}=\theta(t) \end{aligned}\]

3

由于商船方向不变,那么将海盗的速度投影到商船的方向上,再减去商船的速度,可以得到\(r(t)\)的变化率,有

\[\begin{aligned} \frac{dr}{dt}=v_a\cdot cos(\theta(t)-\alpha(t))-\lambda v_a=v_a(cos(\theta(t)-\alpha(t))-\lambda) \end{aligned}\]

对于 \(\theta(t)\)

\[ \frac{d\theta(t)}{dt} = \frac{d}{dt} \arctan\frac{y_a(t) - y_b(t)}{x_a(t) - x_b(t)} \]

代入 \(\beta(t) = \theta(t)\),我们有

\[ \frac{d\theta(t)}{dt} = \frac{\nu_a(t) \sin(\alpha(t) - \theta(t))}{r(t)} = \frac{\nu_a \sin(\alpha(t) - \theta(t))}{r(t)} \]

4

\(\alpha(t) \equiv 0\)时,商船沿x轴正向行驶,因此\(\cos \alpha(t) = 1\)\(\sin \alpha(t) = 0\)

此时有

\[ \frac{dr(t)}{dt} = \lambda \nu_a - \nu_a \cos \theta(t) \]
\[ \frac{d\theta(t)}{dt} = \frac{\nu_a \sin \theta(t)}{r(t)} \]

\(\lambda = 1\)时,距离\( r(t) \)的微分方程简化为:

\[ \frac{dr(t)}{dt} = \nu_a (1 - \cos \theta(t)) \]

解微分方程

\[ \frac{d\theta(t)}{dt} = \frac{\nu_a \sin \theta(t)}{r(t)} \]
\[ \frac{d\theta(t)}{\sin \theta(t)} = \frac{\nu_a}{r(t)} dt \]

积分两边

\[ \int \frac{d\theta(t)}{\sin \theta(t)} = \int \frac{\nu_a}{r(t)} dt \]
\[ \ln \left| \tan \frac{\theta(t)}{2} \right| = \nu_a \int \frac{1}{r(t)} dt + C_1 \]

对于距离\( r(t) \)的微分方程

\[ \frac{dr(t)}{dt} = \nu_a (1 - \cos \theta(t)) \]
\[ \frac{dr(t)}{1 - \cos \theta(t)} = \nu_a dt \]

积分两边

\[ \int \frac{dr(t)}{1 - \cos \theta(t)} = \nu_a \int dt \]
\[ \int \frac{dr(t)}{1 - \cos \theta(t)} = \nu_a t + C_2 \]

由于 \(\cos \theta(t) = 1 - 2 \sin^2 \frac{\theta(t)}{2}\),我们有

\[ \frac{1}{1 - \cos \theta(t)} = \frac{1}{2 \sin^2 \frac{\theta(t)}{2}} = \frac{1}{2} \csc^2 \frac{\theta(t)}{2} \]
\[ \int \frac{1}{2} \csc^2 \frac{\theta(t)}{2} dr(t) = \nu_a t + C_2 \]
\[ -\frac{1}{2} \cot \frac{\theta(t)}{2} = \nu_a t + C_2 \]

问题二

1

物体 \(B\) 的位置可以表示为

\[ x = a \cos \theta - \rho \cos \omega \]
\[ y = a \sin \theta - \rho \sin \omega \]

对于 \(\frac{dx}{d\theta}\)\(\frac{dy}{d\theta}\)

\[ \frac{dx}{d\theta} = \frac{d}{d\theta} (a \cos \theta - \rho \cos \omega) = -a \sin \theta - \frac{d\rho}{d\theta} \cos \omega + \rho \sin \omega \frac{d\omega}{d\theta} \]
\[ \frac{dy}{d\theta} = \frac{d}{d\theta} (a \sin \theta - \rho \sin \omega) = a \cos \theta - \frac{d\rho}{d\theta} \sin \omega - \rho \cos \omega \frac{d\omega}{d\theta} \]

2

物体 \(B\) 的运动轨迹在 \((x, y)\) 处的切线斜率为 \(\frac{dy}{dx}\),有

\[ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a \cos \theta - \frac{d\rho}{d\theta} \sin \omega - \rho \cos \omega \frac{d\omega}{d\theta}}{-a \sin \theta - \frac{d\rho}{d\theta} \cos \omega + \rho \sin \omega \frac{d\omega}{d\theta}} \]

切线方程为:

\[ y - y_0 = \frac{dy}{dx} (x - x_0) =\frac{a \cos \theta - \frac{d\rho}{d\theta} \sin \omega - \rho \cos \omega \frac{d\omega}{d\theta}}{-a \sin \theta - \frac{d\rho}{d\theta} \cos \omega + \rho \sin \omega \frac{d\omega}{d\theta}}(x-x_0)\]

其中 \((x_0, y_0) = (a \cos \theta - \rho \cos \omega, a \sin \theta - \rho \sin \omega)\)

法线方程的斜率为 \(-\frac{1}{\frac{dy}{dx}}\),因此法线方程为:

\[ y - y_0 = -\frac{1}{\frac{dy}{dx}} (x - x_0) =-\frac{-a \sin \theta - \frac{d\rho}{d\theta} \cos \omega + \rho \sin \omega \frac{d\omega}{d\theta}}{a \cos \theta - \frac{d\rho}{d\theta} \sin \omega - \rho \cos \omega \frac{d\omega}{d\theta}}(x-x_0)\]

3

设物体 \(B\) 的速度为 \(v\),则在时间 \(t\) 内,物体 \(B\) 移动的距离为 \(vt\),而物体 \(A\) 移动的距离为 \(\frac{vt}{n}\)

根据几何关系,我们有

\[ \frac{d\rho}{dt} = -v \]
\[ \frac{d\theta}{dt} = \frac{v}{na} \]

因此,我们有

\[ \frac{d\rho}{d\theta} = \frac{\frac{d\rho}{dt}}{\frac{d\theta}{dt}} = -v \cdot \frac{na}{v} = -na \]

根据几何关系,我们有

\[ \frac{d\omega}{dt} = \frac{v \sin \omega}{\rho} \]

因此,我们有

\[ \frac{d\omega}{d\theta} = \frac{\frac{d\omega}{dt}}{\frac{d\theta}{dt}} = \frac{v \sin \omega}{\rho} \cdot \frac{na}{v} = \frac{na \sin \omega}{\rho} \]

所以,\(\omega\)\(\rho\) 满足的微分方程组为

\[ \frac{d\rho}{d\theta} = -na \]
\[ \frac{d\omega}{d\theta} = \frac{na \sin \omega}{\rho} \]