2¶
约 200 个字 预计阅读时间 1 分钟
2.1¶
令伪币质量为\(W'\),有
\[\begin{aligned}
M_1&=(N-|I|)W+|I|W' \\
M_2&=W\Sigma_{i\notin I}p^i+W'\Sigma_{i\in I}p^i
\end{aligned}\]
将\(W'\)消去得到
\[\begin{aligned}
(M_1-(N-|I|)W)\Sigma_{i\in I}p^i&=(M_2-W\Sigma_{i\notin I}p^i)|I| \\
(M_1-NW)\Sigma_{i\in I}p^i&=(M_2-W\Sigma_{i\notin I}p^i-W\Sigma_{i\in I}p^i)|I| \\
&=(M_2-W\Sigma p^i)|I| \\
&=(M_2-W\frac{p(1-p^N)}{1-p})|I|
\end{aligned}\]
由此我们可构造函数
\[\begin{aligned}
F(M_1,M_2,W,N,p)&=\frac{M_2-\frac{p(1-p^N)}{1-p}W}{M_1-NW}=\frac{\Sigma_{i\in I }p^i}{|I|}
\end{aligned}\]
2.2¶
若由\(\frac{\Sigma_{i\in I }p^i}{|I|}\)可得唯一的\(m,I\),则不存在\(I'\neq I\),使\(\frac{\Sigma_{i\in I }p^i}{|I|}=\frac{\Sigma_{i\in I' }p^i}{|I'|}\),而\(|I|,|I'|\leq N\),故\(p>N\)时,可以确定唯一的\(m,I\)。
当\(p=2\)时,可能有\(\frac{2}{2^1}=\frac{1}{2^0}\),无法判断