解一元方程组¶
约 401 个字 预计阅读时间 1 分钟
二分法¶
介值定理
终止条件¶
- \(|p_N-p_{N-1}|<\epsilon\)
- 数列可能发散
- 没有一个绝对的标准来判断误差
- \(\frac{|p_N-p_{N-1}|}{|p_N|}<\epsilon\)
二分法精度:\(|p_N-p_{N-1}|<\frac{b-1}{2^n}\)
优点:
- 较简单,只需要是连续函数就行
- 总是能收敛
缺点:
- 收敛慢,
- 没法找重根
- 找到最初范围较难
p54 13,15
不动点迭代法¶
将\(f(x)=0\)转化为\(x=g(x)\),然后从\(p_0\)开始,令\(p_n=g(p_{n-1})\),进行迭代
收敛条件
Let \(g\in C[a,b]\) be such that \(g(x) \in [a, b]\), for all \(x\) in \([a, b]\). Suppose, in addition, that \(g’\) exists on \((a, b)\) and that a constant \(0 < k < 1\) exists with \(|g’(x)| \leq k\) for all \(x \in (a, b)\). Then, for any number \(p_0\) in \([a, b]\), the sequence defined by \(p_n = g( p_n – 1 ), n \geq 1\), converges to the unique fixed point \(p\) in \([a, b]\).
若\(g\)满足不动点迭代的条件,则可以通过 \(|p_n-p|\leq \frac{1}{1-k}|p_{n+1}-p_n|\ and\ |p_n-p|\leq \frac{k^n}{1-k}|p_{1}-p_0|\) 来判断精度
牛顿法¶
利用切线逼近零点
\(0=f(p)\approx f(p_0)+f'(p_0)(p-p_0) \rightarrow p\approx p_0-\frac{f(p_0)}{f'(p_0)}\)
由此进行迭代,有\(p_n=p_{n-1}-\frac{f(p_{n-1})}{f'(p_{n-1})}\)
迭代法误差分析¶
误差分析
如果\(\{p_n\}\)收敛于\(p\),若存在\(\alpha,\lambda\)使\(\lim_{n\rightarrow \infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}}=\lambda\),则
- \(\alpha=1\),线性收敛
- \(\alpha=2\),二次收敛
what if the root is not simple
If \(p\) is a root of \(f\) of multiplicity \(m\), then \(f(x) = (x – p)^mq(x)\ and\ q(p)\neq 0\),then \(f'(x)=m(x-p)^{m-1}q(x)+(x-p)^mq'(x)\)